
Raw Notes on the Ruby Language

Marcello Galli, October-2014

These notes are the by-product of a never-held seminar on the Ruby language.

I like the Ruby language: it has a lot of peculiar features, interesting ideas implemented and a lot of features built
into the language; it is a complex language, so, while studying the language, I prepared some raw notes for
myself, with the idea of a Ruby seminar for my colleagues, but a Python course was more than enough for them,
so the seminar was never held.

I ended putting these raw notes on my website, but on the web there is so much material about Ruby, that I
doubt I will ever have some casual readers. Nevertheless these notes are here, unfinished, in a raw state, with
errors and typos, but free for everyone (for non-commercial use), released under the "Creative Commons
License":http://creativecommons.org/licenses/by-nc-sa/4.0/.

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 1
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/marcello/galli.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.helldragon.eu/

Contents
Introduction 4

References 4

Main Features 6

Usage 8

Syntax 8

Predefined variables and constants 10

Inclusion of External Files 11

Scope of Names 12

Scope of Constants 12

Statements 13

Conditional Statements 13

Loop Statements 14

Exception Handling 16

Postfix Expressions 18

Operators 19

Classes and Methods 21

Instance and Class Variables 21

Methods and Functions 21

Public, Private and Protected Methods 22

Function Call 23

Function Definition 23

Function Arguments 24

Blocks Given to Functions 25

proc and lambda 26

Class Definition 28

Inheritance 29

Class Instances 29

Class Methods and Instance Methods 29

Accessor Functions and Instance Variables 30

Adding Methods to a Class 31

Singleton Methods 31

The Object Class 33

Logical Classes 34

Numeric Classes 35

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 2
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Methods for the Numeric Classes 36

Methods for Integers 37

Methods for Floats 38

Conversion Methods 38

Subscript Operator 38

Precedence for operators 39

String Class 40

String Encoding 40

Double-quoted String 41

Single-quoted Strings 41

String Operators 42

Array Class 45

The Subscript Operator: [] 47

Hash Class 48

Range Class 50

Regular Expressions 51

Other Builtin Classes 54

Iterators 56

The Enumerator Class 56

The Enumerable Module 56

Some iterator for numerics 57

Some Iterators for Strings 58

Some Iterators for Arrays 58

Some Iterators for Hashes 59

Input/Output 60

Modules 63

Builtin Modules 64

Standard Library 64

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 3
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Introduction
Ruby is a new language, developed by Yukihiro Matsumoto in 1993, as a simple, very object oriented,
interpreted language, influenced by Perl, Python, Lisp. For some years Ruby remained a Japanese only product,
developed on Japanese newsgroups and mailing lists. Only in 1999 an English mailing list on Ruby appeared,
and only in 2000 the first English book on Ruby was printed; this greatly limited the diffusion of the language,
which deserved a wider audience, but, for some time, was known only in Japan. Around 2005, the diffusion of
the web framework "Rails" gave new emphasis to the diffusion of Ruby.

In many aspects Ruby is different from every other programming language I have ever used; it is an interpreted
language, as Python, and has many similarities with Python: harray, hashes, metaprogramming, a polymorphic
structure. Many things work in a similar way, but the underline philosophy is very different: Pyhton wants to be
simple, with a clear structure, few lexical constructs, each thing being done in only one way (and eventually the
correct one); the core is simple and most is in additional modules. Ruby instead gives to the programmer the
maximum flexibility; there are many ways to do the same thing, there is an exasperation of the object oriented
paradigm, and every possible feature is fitted into the language. Ruby is a very interesting language, but it is not
easy.

Ruby versions

Version 0.95 1995

Version 1.0 1996

Version 1.2 1998

Version 1.4 1999

Version 1.6 2000

Version 1.8 2003

Version 1.9 2007

Version 2.0 2013

Version 2.1 2013

Version 1.8 was accepted as an ISO and JIS standard, but version 1.9 is not backward compatible with version
1.8; version 2 also has minor incompatibilities with version 1.9. Version 2 introduced a better interpreter (YARV).
There are also just-in-time Ruby compilers, and Jruby, which produces a Java bytecode.

References
There are many books on Ruby, but most are limited the version 1.8 of the language, new editions being
planned for 2014-2015. The evolution of Ruby is fast, and with version 1.9 many things changed, so you have to
look for books covering at leas version 1.9. Some books have been translated in Italian, but I suggest to avoid
the Italian translations of books on computer science. Often the quality of the translation is bad; it's clearly done
by non-programmers: with a wrong choice of Italian technical terms, and errors, so some topics are difficult to
understand. Some good books are:

• Programming Ruby 1.9 & 2.0, by Dave Thomas et al., Pragmatic, 2013.

It's the reference book for Ruby, with all class methods listed and explained.

• The Ruby Programming Language, by David Flanagan, Yukihiro Matsumoto, O'Reilly 2008.

A good book to learn the language.

• Learning Ruby, by Michael Fitzgerald, O'Reilly 2007.

A good book but doesn't cover version 1.9.

Introduction

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 4
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

• Ruby Pocket Reference, by Michael J. Fitzgerald, O'Reilly, 2007.

An useful booklet, with a summary of the language, but it doesn't cover version 1.9.

The official web site for the language is: https://www.ruby-lang.org

Documentation can be found also on: http://ruby-doc.org/

A bit dated Ruby guide is in: http://www.rubyist.net/~slagell/

Introduction

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 5
Downloaded from http://www.helldragon.eu/

https://www.ruby-lang.org
http://ruby-doc.org/
http://www.rubyist.net/~slagell/
http://www.helldragon.eu/

Main Features

A modern, interpreted language:

in may aspect Ruby is similar to Python: variables are reference to objects, and their type is defined at
run time, when they are assigned. In this way we have a polymorphic language (the same functions can
be used for different data types), but the errors on the type of variables are detected only at run-time.
Ruby allows for reflection (the program knows its internals) and metaprogramming (the program can
change itself at run-time).
As an interpreted language Ruby is not very efficient and it is not suited for heavy computations;
compiled languages perform better. Ruby uses a bytecode to speed things and has a builtin garbage
collection system.

Very, very object oriented:

In Ruby all is an object, the object paradigm is very empathized and this leads to a change in the
meaning and usage of some classic elements of computer languages: methods and operators become
the same thing; no more distinction between basic types and objects, instance variables are used
through methods, common keywords become methods of some basic object, loops are replaced by
iterator methods:

• Ruby tries to follow in a strict way the encapsulation paradigm. Class and instance variables
are strictly private and accessible only thought special "accessor" methods. These methods,
used without parenthesis, seems a direct usage of class variables; instance variables and
methods become two very similar things in practical usage.

• Also basic types (as numbers) are objects and have attributes. Most functions and operators
are attributes of objects. Basic operators too are implemented as methods, so the concepts of
operator and class method, that are different things in many languages, are unified in Ruby.
Operator overloading become a very common feature of classes and an operation not
allowed for a given type becomes the missing of a method in the corresponding class.

• Many features are implemented as methods of basic classes: every class inherits the class
Object, which is a common parent for all the Ruby classes. The class Object includes the
module "Kernel" with all the major functions of Ruby, and also many statements and
operators are implemented as methods of the "Kernel" module

• In Smalltalk, one of the first object oriented languages, objects are very well separated
entities, and calls to methods are seen as "messages" send to objects. In Ruby this idea is
not so clearly stated, nevertheless each function is a method of an object which acts as the
"receiver" for the function. When the program runs you are always in the environment of an
instance, acting as a search scope for names and as a receiver for functions; also in the
interactive usage one is in the environment of an instance, which is named: "main" and has
inherited Object. This is the way the statements that are methods of the Kernel module are
made available to the interactive user. The current instance (the receiver) is referred to by the
keyword "self".

• The class itself (the definition of the class) is built as an instances of the class: Class; class
methods are methods of this instance;

• Only single inheritance is allowed, but a class can include modules, containing attributes that
are mixed into the class (mixins).

Duck Typing:

all is an object; also basic types, as integer an floats, are objects: algebraic operators (as addition,
multiplication etc.) become methods of the basic objects.

Main Features

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 6
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

In object oriented languages as C++, or Java, there are some basic types and, in addition, objects,
which define new types. But here, with the disappearing of basic operators (now class members), the
concept of type weakens, and the object interface becomes the essential item;
This way of intending types is called "duck typing": the object interface defines its type. For the origin of
the expression "duck typing" see: http://en.wikipedia.org/wiki/Duck_test .

The syntax tries to mimic the human (English) language:

• we have postfix syntax, with condition after statements:

• parenthesis in function calls are optional, so that a function call appears as an actions taken on
the arguments;

• iterator functions associated with blocks seem actions on sets of objects

• some functions are attributes of basic types, giving a very compact syntax for some common
logical constructs: : Es.: 5.times { ...} ;

• we have functions ending with "=", which mimic an assignment; this choice is related to the need
of accessor functions to set variables belonging to classes.

• return statements in functions are optional: each block of statements return something and acts as
an expression, if not specified returns the last evaluated statements, and, if has nothing
meaningful to return, returns the nil object.

• the "then" keyword, used to begin conditional blocks, is optional

• .
Many find this attempt to make a programming language nearer to the human language a great feature,
making Ruby programming: "fun". Solving an interesting problem can be fun, but the used computer
language is only a tool: can be easy, powerful, elegant, but if your job is boring no computer language
can change things. For me, as an old programmer, programming means translating from the human
logic to the computer logic: humans and computers are different and follow different logic schemes,
talking to the computer is worthless and essentially wrong. For example I need parenthesis when
calling a function, to have an idea of what the computer is doing; in the Ruby world, without parenthesis
as delimiters, finding spare words after a function is deceiving and leads to syntactical ambiguities.

Convention over declaration:

• Constants are capitalized, and also class names.

• variables beginning with "$","@","@@" are respectively global, instance and class members.
Extended usage of iterators:

there is an extended usage of iterators, implemented as class methods coupled with block of
instructions to be executed at each iteration. It's the preferred way of looping in Ruby, with a very
compact syntax and an easy way to implement filters and transformations of sequences of objects.
Basic types have tenths of different iterators, which can be used for complex tasks. Iterator methods
can easily written also for user defined classes.

A lot of funcionalities are built "into" the language:

many features are implemented by means of basic types: common structures, as arrays and
associative dictionaries (called hashes in Ruby), are also basic types. There are many operators, a
complete set of functions to deal with strings, regular expressions, an easy ways to interact with the
underling operating system, an integrated help system, builtin modules for common actions and
countless additional packages to do everything.

Main Features

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 7
Downloaded from http://www.helldragon.eu/

http://en.wikipedia.org/wiki/Duck_test
http://www.helldragon.eu/

Usage
Ruby can be used in an interactive way, or as a standalone program. There is also an interactive help shell,
invoked with the command: ri. Some documentation about a Ruby program can be produced with rdoc from
specially formatted comments placed into the source code. Ruby can be used in the following three ways:

• The command irb invokes an interactive Ruby shell: the Ruby shell has some useful commands as: an
"help" command; a "source" command to load Ruby files; "conf" to show the configuration; an "exit"*
command and commands to manage subshell, similar to the batch jobs in Unix.

• Using the "ruby" command: a file containing a Ruby program can be executed with: "ruby filename.rb".

The ruby command has also optional flags to execute a string of Ruby statements or to apply Ruby
statements to an input streams as in the following examples:

ruby -e 'a=1 ; print "a=",a,"..OK\n " ;' ==> a=1...OK

echo "aaaa" | ruby -n -e 'print $_.upcase' ==> AAA

• In Unix an executable file beginning with the line: "#!/usr/bin/ruby" can be executed as a shell
command.

Syntax
Ruby is case sensitive .

Blank lines are ignored and multiple blanks are condensed;

"#" is used for comments, extending from the character: "#" up to the end of the line.

A semicolon: ";* , or a newline, is used to separate statements, but incomplete expressions can extend over
more lines. The backslash: "\" can be used to escape the final newline character, effectively joining two lines.

Curly braces: "{ }" are used to define a block of statements;

Logical blocks are initiated by different keywords (begin class, def, if, do), but all are terminated by the
keyword: "end".

The special keyword: "__END__" , on a line by itself, without leading or trailing spaces, can be used to mark the
end of the program in a Ruby file; all after this line is ignored.

Special blocks of lines have specific delimiters:

=begin

 here an embedded document,
 with comments or documentation
=end

BEGIN { here a block of code executed at the beginning of the program }

END { here a block of code executed at the end of the program }

Arrays, hashes and strings are basic types: arrays are sequence of heterogeneous objects, represented as
comma separated values between square brackets; their elements are obtained bu an integer index between
square brackets. Hashes, instead of an integer index have elements obtained by a key, which can be any object,
but is usually a number or a string. Hashes are represented by a sequence of a key and a value, separated by

Usage

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 8
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

an arrow, between curly brackets. Strings are represented as sequences of characters between single or double
quotes. Array and hashes will be described in a subsequent section, but some examples are anticipated here:

a=[1,2,3] # creation of an array of three numbers
 # a[0] is a reference to '1', a[1] to '2' ...

b={"a"=>1,"b"=>2} # an hash of two values, using strings as keys.
 # b["a"] is a reference to '1', b["b"] to '2'

Variables and method names:

names of variables begin with a lowercase letter and are made by an arbitrary number of letters, digits or
underscores;

variables are reference to objects, and assignments for numerics and hashes or dictionaries have different
effects:

a=1 ; b=a ; a=2 => you have a==2 ; b==1 ;
 the assignment b=a makes: '2':a new number object

a=[1,2,3] ; b=a ; a[1]=0 => the assignment b=a makes only a new reference.
 You have both 'a' and 'b' changed to:[1, 0, 3]
 To make a new array you have to use: b=a.dup
 The same happens for hashes or strings.

Constants:

constants begin with an uppercase letter, are not really constants, can be changed, but Ruby issues a warning
when you change a constant.

Class and Module names are references to classes and modules, constant too and capitalized.

Symbols:

symbols are pointers to the internal name table of Ruby; names of symbols have the prefix ":";

they belong to the class "Symbol", and, from Ruby 1.9, have some methods similar to the methods of strings
(size, uppercase,swapcase etc.). There are also conversion functions between strings and symbols:

sym=stringa.to_sym # change a string into a symbol

stringa=sym.to_s # change a symbol into a string

stringa=sym.id2name # change a symbol into a string

Symbol.all_symbols # shows all symbols

Symbols are automatically created by Ruby for nearly every object of a program. The method:
Symbol.all_symbols return an array of all the defined symbols; id2name, or to_s, returns a string representing
a symbol.

Access to objects through symbols is faster; when an object has been defined, a symbol with the corresponding
name can be used to refer to the object. Symbols are often used as keys in hashes.

Some characters have special meaning in names:

Usage

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 9
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Character Usage

@ first character for private instance variables

@@ first characters for class variables

$ first character for global variable

? last character for names of functions returning a bool (not mandatory)

! last character for names of functions modifying an item in place (not mandatory)

= last character for names of functions with an usage which mimics an assignment

: prefix for symbols

Ruby has some reserved words, which can't be used for user-defined names:

__ENCODING__ __FILE__ __LINE__ BEGIN END alias and begin
break case class def defined? do else elsif end
ensure false for if in module next nil not
or redo rescue retry return self super then true
undef unless until when while yield

Predefined variables and constants
As in Perl, there are many global variables pre-defined, and also pre-defined constants, some are in the
following table.

Constant Meaning

$0 name of the Ruby program (also: $PROGRAM_NAME)

$* array with command line options (also: ARGV)

$" array of included modules

$: path for module searching

$stderr, $stdout, $stdin standard I/O streams

$_ last read line

$; default string separator for the split function

$, separator for printed items (default is nil)

$! last raised exception

$@ backtrace for last raised exception

$& for regular expression: matched string

$` substring before the match

$' substring after the match

$1...$n sub-expressions in the match

$? status of the last sub-process (contains the Status object)

ARGV array of strings with command line options

ENV hash of environment variables

Predefined variables and constants

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 10
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

RUBY_DESCRIPTION description of the Ruby version

RUBY_PLATFORM the computer type

RUBY_VERSION Ruby version number

In the ARGV the options are saved as strings, and the first option is in ARGV[0].

Most of these constants can be changed at run-time.

Inclusion of External Files
A ruby program, or the interactive session, can include Ruby statements contained in an external file. The
statements are executed in the context of the program; variables, classes, functions and constants defined in the
file become available to the program, with the exception of local variables, which are never seen outside of the
environment in which they are defined (in this case the external file).

The "load" or the "require" statements are used to load a file:

load 'nomefile.rb' # can be also used to load compiled binaries

require 'nomefile' # the ".rb" suffix is assumed

require_relative 'nomefile' # search path relative to the current directory
 # not working for the interactive shell.

The "load" statement can also load compiled libraries into Ruby, and needs the file prefix, which can be ".so" or
"dll" for binary libraries, ".rb" for Ruby files. The "require" statement loads only Ruby files and doesn't need the
file prefix, assuming that it is ".rb" .

The "load" statement can be executed many times to reload the file; instead the "require" statement load the file
only once also if called many times; the variable $" contains a list of the files loaded with require.

Files are searched in the current directory and in system-defined directories. The variable $LOAD_PATH
contains an array of directories to search for files, $LOAD_PATH can be changed at run-time.

For example, in a Debian 7 system, we have

$LOAD_PATH == ["/usr/local/lib/site_ruby/1.9.1",
 "/usr/local/lib/site_ruby/1.9.1/x86_64-linux",
 "/usr/local/lib/site_ruby",
 "/usr/lib/ruby/vendor_ruby/1.9.1",
 "/usr/lib/ruby/vendor_ruby/1.9.1/x86_64-linux",
 "/usr/lib/ruby/vendor_ruby",
 "/usr/lib/ruby/1.9.1",
 "/usr/lib/ruby/1.9.1/x86_64-linux"]

to add the current directory:

 $LOAD_PATH.unshift('./')

or:

 $LOAD_PATH << '.'

Inclusion of External Files

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 11
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

The require_relative statement doesn't search in the $LOAD_PATH, but only in the path relative the directory
from which the statement is called. require_relative can't be used in the interactive shell.

Scope of Names
In Ruby the scope for names can be one of: local, global, instance and class. Names defined out of classes or
functions belong to the "main object" scope.

Local variables (those beginning with a lowercase letter) are local to the file class, function or block in which are
defined and can't be accessed from the outside. Functions don't see local variables defined out of the function
itself. A block can see variables defined in the program before the block.

Ruby programs (or the interactive session) can include Ruby files, with the "load" or "require" statement. These
files are executed in the environment of the program, but local variables defined in the file are not seen in the
program and vice-versa.

Global variables are accessible in the whole program and the first character of their name is : "$" .

Instance variables are private to a class instance; their names begins with: "@" and they are seen by the
methods of the instance. Special methods are needed to access them from the outside of the object. They have
to be initialized by methods of the class, not in the body of the class, outside methods.

In the interactive usage, variables prefixed with "@" are instance variable of the "main" object, and seen in
functions.

Class variables, defined in a class, are common to all the instances of the class; if defined in an child class can
be seen also in the parent. Their names begin with "@@".

The function: "defined?(varname)" return the scope of a defined variable, or "nil" if not defined.

Scope of Constants
Names beginning with an uppercase letter (capitalized) are reference to constants.

Constants can't be defined into methods.

Constants defined outside classes are in the global scope.

Constants defined into a class or module belong to the class or module. Can be accessed outside the module
with the scope operator "::" (i.e.: "Math::PI"), where the name of the module can be also given by an
expression.

Constants defined outside modules, classes or in the main program, can be referred to into classes by using the
scope operator "::", without the module name (Es.: ::Constant).

Scope of Names

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 12
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Statements
Ruby is a structured language, executes blocks of statements, which are delimited by the words "begin .. end"
or "then .. end". After a conditional instruction the "then" statement can be omitted, but not if the statements are
on the same line as the condition.

A block returns a value, which is the result of last executed expression.

Conditional Statements

• The if , then, else statement:

if a==0 then b=77 end # if on a single line, "then" is mandatory

if boolean-expression then
 statements
elsif boolean-expression then
 statements
else
 statements
end

The if statement has a return value: the result of the last executed statement, or nil:

name = if x == 1 then "one"
 elsif x == 2 then "two"
 elsif x == 3 then "three"
 elsif x == 4 then "four"
 else "many"
 end

• unless, same as: "if not .."

unless a==0 then b=77 end

unless boolean-expression then
 statements
else
 statements
end

• The case statement, for multiple conditions; the general form is:

case target-expr
when comparison , comparison ... then
 statements
when comparison , comparison ... then
 statements
else # optional else
 statements
end

Statements

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 13
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

The case statement is equivalent to the "if elsif .. end" statement:

Case statement Equivalent if-else statement

name = case name = if x == 1 then "one"
 when x == 1 then "one" elsif x == 2 then "two"
 when x == 2 then "two" elsif x == 3 then "three"
 when x == 3 then "three" elsif x == 4 then "four"
 when x == 4 then "four" else "many"
 else "many" end
 end

A more concise syntax; where the x value to test is not repeated at each condition:

name = case x
 when 1 # new line as a separator
 "one"
 when 2 then "two" # then used as a separator
 when 3; "three" # semicolon as a separator
 else "many"
 end

In the case statement, the "===" equality is often used. Also ranges are often used in case statements:

case 74.95
when 1...50 then puts "low"
when 50...75 then puts "medium"
when 75...100 then puts "high"
end

Loop Statements
The blocks executed many times are between the "do .. end" statements, or curly brackets. The "do" keyword
can be omitted. The "do" (or bracket) beginning the loop block must be on the same line as the "loop" keyword.

• The infinite loop:

loop do
 statements
end

loop { a+=1 ; print(a) ; break if a>3 } # loop on a single line

• The while loop:

while boolean-expression do
 statements
end

x = 0
while x < 10 do puts x = x + 1 end # loop on a single line

Loop Statements

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 14
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

• The until loop (same as: while not):

until boolean-expression do
 statements
end

• while and until loops executed at least once, with the condition at the end of the block:

x = 10
begin # Starts the conditional block, executed at least once
 puts x
 x = x - 1
end until x == 0 # condition evaluated at the end

a=10
begin
 a+=1
end while a<3

• The for loop: this loop returns, at each iteration, an element of a sequence; the sequence is often an array
or an hash. The "do" keyword is optional if the subsequent statements are on the following lines:

for name, name in sequence do
 statements
end

a=[1,2,3,4]
for i in a
 print i
end

for i in a ; print i ;end
for i in a do print i ;end

for i in (1..3) do print i ; end # range usage in the loop

hash = {:a=>1, :b=>2, :c=>3}
for key,value in hash
 puts "#{key} => #{value}"
end

• Statements altering the loop flow:

• break : terminates loop immediately; can have an optional argument that is is the loop result

• next : goes to the next iteration.

• redo : repeats the iteration, without testing again the condition.

• retry : repeats the iteration, testing again the condition.

Example:

Loop Statements

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 15
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

for i in a
 break if i==3
 next if i==2
 print i
 redo if i==1 # this is an infinite loop
end

• catch, throw :

These statements alter the loop behavior; are similar to the trowing of an exception, and can be used to
exit from an inner block in a deeply nested structure; it's an involved substitute for a simpler "goto"
statement; but the "goto" statement has not been included in Ruby: it is strictly forbidden by the structured
programming dogmas, so we need this construct, which enables us to write true "spaghetti code" in
structured programming.

The catch statement defines a block, which is interrupted by a throw statement. The catch block has a
label, and the throw send to the end of the block with the label:

for matrix in data do # A deeply nested data structure.

 catch :label do # begin of the catch block
 # the block has the label: ":label"
 for row in matrix do
 for value in row do
 throw :label unless value # Break out of two loops at once,
 statements # otherwise, executes these statements.
 end
 end

 end # end of the catch block

end

Exception Handling
The raise and rescue statements are used for exception handling; the "raise" statement throws an exception,
which is an instance of the "Exception" class. There are many pre-defined exception classes, the default being
"RuntimeError".

The "rescue" statements define blocks which are executed if an exception of a specified class is raised. The last
raised exception is saved in the global variable: "$!" .

The general form of the "begin ... rescue .. end" block is:

begin
 ...
 raise exception_name

rescue Exception_class,Exception_class => local_name_for_exception

 (block executed if given the exceptions have been raised)

rescue Exception_class,Exception_class => local_name_for_exception

 (block executed if given the exceptions have been raised)

Exception Handling

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 16
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

else

 ... block executed if no exception in main block

ensure

 block executed in any case
end

The rescue statement can give to the exception a local name, to be used in the rescue block itself.

The rescue block can have a "retry" statement which re-executes the block after the "begin" statement.

The optional block after the last rescue statement, defined by an "else" statement, is executed if there are no
exceptions. If, in the main block, a return, next or break statement is encountered, the "else" block is skipped.

The final, optional, "ensure" block is executed in every case.

If a new exception is raised in a rescue block the old exception is discarded and replaced by the new exception.

Below some examples of the raise statement:

raise "message error" if n < 1

raise RuntimeError.new("message error") if n < 1

raise RuntimeError.exception("message error") if n < 1

An example of a simple "begin ... rescue .. end" block:

begin

 raise "negative value" if x<0 # raise the exceptions
 y=Math::sqrt(x)

rescue => ex # Stores the exception in the local variable ex

 puts "#{ex.class}: #{ex.message}" # Handle exception

end

In the following example more rescue blocks catch different exceptions; a single rescue block can catch more
types of exceptions:

begin
 y=Math::sqrt(x)
rescue DomainError => ex
 puts "Try again with a value >= 1"
rescue TypeError,ArgumentError => ex
 puts "Try again with an integer"
end

The rescue statement can be also used to give an alternate value to a variable:

Exception Handling

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 17
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

y = Math::sqrt(x) rescue 0

Postfix Expressions
In "postfix expressions" a condition is after the statements to be executed; postfix expressions are typical of
Ruby, which tries to mimic a natural language with its syntax. The general form of a "postfix expressions" is:

 expr if bool-expr # the same as: "if expr then ... end")

 expr unless bool-expr # the same as "unless bool-expr then ... end")

Examples::

 exit if not str or not str[0]

 a=1 if a.nil?

There are postfix expressions also for the "while" and "until" loops, with condition and loop statements to be
executed on the same line. In these cases the condition is tested before the first iteration:

x = 0
puts x = x + 1 while x < 10 # The while condition is at the end

a = [1,2,3]
puts a.pop until a.empty? # The until condition is at the end

Postfix Expressions

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 18
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Operators
In Ruby nearly all operators are class methods: types, operators and functions are all joined in an strong object
oriented paradigm.

Only the assignment operators and some logical operators are not implemented as class methods. These
operators are:

Operator Meaning

= assignment : a=1

+= -= *= operation and re-assignment, implemented for all numerical operators

:? ternary operator

&& logical and

|| logical or

not logical negation

or logical operator "or" with lower precedence

and logical operator "and"with lower precedence

.. ... range operators (create range objects)

defined? nil if not defined, otherwise the type: Es.: a=1; defined?(a) => "local-variable"

The assignment operator "=" defines a reference to an object, and, for some basic objects, creates an instance
of the object:

anum=1 # creates an instance of the Integer class (the number one)
 # and a reference (the name "anum") to the instance

bnum=anum # creates a second reference to the same integer

In the following example, when a new instance of Integer (the number six) is created, the anum reference is
redefined, but bnum continues to reference to the number one:

anum=1
bnum=anum
anum=6

If instead of numbers we had a composite object, like an array, we could change the object using any of the
references (anum or bnum) and both see the modified object; this can confuse inexperienced users:

anum=["a","b","c"] # anum is a reference to an object array.
bnum=anum # I make a copy of the reference,

anum[0]="k" # Now I change the first element,
; # and both bnum and anum point to: ["k", "b", "c"]

Multiple assignments are possible:

Operators

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 19
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

a=b=c=3 # a,b,c , all reference to '3'
a,b=1,2 # a refers to one, b to two
a,b=1,2,3,4 # extra elements are ignored
a,b,c=1,2 # c is unassigned (c==nil)

Many values can be assigned to a single array, or an array can be expanded to single values in an assignment;
in this case the "*" operator is used: it is called "splat" operator:

a,b=[1,2] # the assignment can be used to expand an array

x,*y=[1,2,3] # extra elements are assigned to an array: x => 1 ; y => [2, 3]

*y,x=[2,3,1] # since Ruby 1.9 the array can be in the first position
a,*y,b=1,2,3,4,5 # and can also be in the middle: a => 1 ; y => [2, 3, 4] ; b => 5

x,y,z=1,*[2,3] # assignment can be used to expand an array: x=>1 ; y => 2 ; z => 3

The operators of the form: "+=,-=,*=" etc. are shorthands for operation and assignment.

The "++" operator doesn't exists in Ruby.

a=a+1 # same as: a+=1
a=a-1 # same as: a-=1

The logical operators: "and" ,"or" ,"&&" , "||" , evaluate the second operand only if the first doesn't define the
relation:

a && b # evaluates 'a' ;
 # if 'a' is false (or nil), returns 'a' (false),
 # otherwise evaluates and returns 'b'

a || b # evaluates 'a' ;
 # if true returns 'a',
 # otherwise evaluates and returns 'b'

This can be used in conditional expressions to execute a routine, as in the Bash shell, or to define a variable
only if not yet defined:

condition && func("aaa") # 'func' is executed only if the condition is true

var || =77 # an undefined variable is false; the assignment is executed.

The ternary operators evaluates a condition, if true returns the first expression, otherwise the second:

1==1 ? 'Yes' : 'No' # the condition is true, the operator returns: 'yes'

1==2 ? 'yes' : 'No' # the condition is false, the operator returns: 'No'

Operators

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 20
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Classes and Methods
Ruby is a very object oriented language, with a rigid implementation of encapsulation, all is an object, common
operators also are class methods and each action is done in the environment of an object; also in the interactive
shell, or in the main program, one acts in the scope of an object.

The current object is referred to by the keyword self, which, in the main program and in the interactive usage,
refers to an instance named main which acts as a default instance for method calls (it is a default receiver).

Ruby has only single inheritance, but classes can include modules (this is called "mixin"): a module defines a
space for names and is a collections of methods, classes and constants, usually placed in an external file. When
a module is mixed into a class, the methods defined in the module are inserted into the namespace of the class.
This is a way to reuse function definitions and define common constants.

A Ruby class can have only one parent, but many modules can be mixed into a class.

All classes have, as a parent, the class "Object", which, since Ruby 1.9, inherits "BasicObject": a nearly empty
class, with only some very basic functions implemented, as the equality operator "==".

The class Object includes (mixins) the Kernel module; this module contains a lot of methods. Are also
implemented as methods of the Kernel module the loop statement, the exit method, the statements used to deal
with exceptions, methods to open and read files and other functions that in many language are basic statements.
The Kernel module implements also some equality operators.

Definition of classes are object too: instance of the class "Class" which inherits the class "Module" (which
inherits "Object"); the class Module has some methods for access rules, mixins and reflection. When executing
the statements in the class definition self is a reference to this instance of Class.

Instance and Class Variables
Variables defined into a class can belong to an instance or to the class; class variables are prefixed with "@@",
and are unique to all the instances; can be defined in the class body or in a class method; instance variables
are prefixed with "@" and each instance has its personal value of these variables. Also the class has a personal
copy of the instance variables.

The instance variables must be defined and initialized into methods, if in the class body they are seen as
instance variables of the class definition, seen as an instance of the class Class.

Both classes and instance variables are encapsulated into the class and can be seen from the outside only by
means of special methods, named: accessors. Local variables are never seen outside their class or method, and
class method don't see local variables defined outside the method itself; local variables are really local.

In spite of the rigid encapsulation instance variables can be obtained by the method:
"instancename.instance_variable_get(:@name_of_var)" , and class variables with:
"Classname.class_variable_get(:@name_of_var)". There are also the methods "class_variable_set" and
"instance_variable_get", to set instance and class variables.

Methods and Functions
In Ruby all functions are methods; also if defined in the main program or in the interactive session, they belong
to a class or an instance.

The class or instance whose method is called is the receiver for the method, the environment in which the
method operates: the method sees all the variables of its receiver.

In the main program or in the interactive usage there is a default receiver instance named "main", which can be
omitted in function calls; otherwise functions are referred to by prefixing their names with a class or instance
name, separated from the function name by a dot.

Classes and Methods

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 21
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

To be called, every function must be associated to a receiver, which can be an instance or a class. There is a
distinction between class methods and instance methods. Instance methods have an instance as the
receiver, class methods have a class as the receiver, they are two different kind of methods.

Methods are not objects in Ruby, but there is a class, the class: Method whose instances store instance
methods. These methods are still bound to their original instances, with access to instance methods and
instance variables.

An instance of Method can be detached from its receiver, becoming an "UnboundMethod" object (which can't be
called) and then re-associated to another instance. The function unbind detaches a method (as instance of
Method) from its receiver; the function bind associated an UnboundMethod to a new instance.

The class Method, has the functions call to execute the method, and functions to return some method features,
as: name, parameters, receiver (returns the instance), owner (returns the class), source_location (source
filename).

Methods are associated to symbols with the same name.

In a Ruby file every function must be defined before its usage.

Public, Private and Protected Methods
In Ruby there are different access rules for methods: methods can be public, private or protected.

Private methods can be called only into their class, by other methods of the class.

Protected methods can be called in the class, in derived classes, or as instance attributes by object of the same
class or a derived one.

By default methods are public, visible everywhere; methods can be made protected or private in the class
definition, by putting them in the appropriate section of the class body; or with the statement: "protected" put
after the class definition.

A derived class can redefine also the access properties of a method defined in a parent class.

The statements defining the access properties of a method: public, private and protected, are implemented as
methods of the class: "Module".

Public, Private and Protected Methods

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 22
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Function Call
The general form of a function call consists of: an optional receiver name, the function name, zero or more
function arguments and an optional block of statements which can be given to the function. The block is
executed inside the function by the yield statement. When the receiver name is omitted, the current instance is
used as a default receiver:

receiver_name.function_name(argument, argument, argument) {statement block}

There are some conventions on method names:

• method names begin with a lowercase letter.

• Parentheses around arguments are optional.

• Methods ending with "?" returns true or false; methods ending with "!" changes the internal status of an
object.

• Methods ending with "=" mimic the setting of values; when these functions are called, if we omit the
brackets, instead of "func=(x)", we can write: "func=x", which seems an assignment. A typical usage of
these functions is to give a value to an instance variable. A function giving value to an instance variable is
named: "setter function", and can be written as:

def b=(a) # '@b' is an instance variable; 'b=' an instance method
 @b=a
end

self.b=333 # seems an assignment, but calls a function
@b # => 333

Arguments are passed by reference to the functions and arrays and hashes passed to functions can be changed
into the function.

Function Definition
Functions are defined with the statement "def" , followed by the function name, and arguments between round
brackets; then there is the body of the function, which is a block of statements, terminated by the keyword:
"end".

The name of the function begins with a lowercase letter.

Parentheses around arguments are optional both in method definition and invocations. As most of the Ruby
statements, the "def" statement is an expression, and returns a value that is: "nil".

The function name can be prefixed by the name of the receiver, separated from the function name by a dot.
Methods can be defined outside their instances or classes, after the instance or class creation.

Functions return the values given by the "return" statement or the last evaluated statement, if return is omitted.
Multiple values can be returned and they are automatically placed into an array:

def func(a,b)
 c=1
 return a+b,c,"xx"
end

func(1,2) => [3, 1, "xx"] # returns an array

Function Call

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 23
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Methods can be deleted with the "undef" statement: "undef func" deletes the method named: func.

Method names can have aliases:

"alias newname old_name"

A function can have exception handling blocks at the end, which catch the exceptions raised in the function:

def func(..)
 ...
 raise Exception_class
 ...
rescue Exception_class => local_name

rescue Exception_class => local_name

else
 ...
ensure

end

Function Arguments
There are many different ways to specify the arguments:

• Arguments can have default values:

def iniziostringa(s, caratteri=1)
 s[0,caratteri] # a substring of a given length
end

iniziostringa("Abcdef") => "A"
iniziostringa("Abcdef",3) => "Abc"

• Arguments can be expressions, and also default values can be expressions and methods of the preceding
arguments:

def iniziostringa(s, caratteri=s.size-2)
 s[0,caratteri]
end

iniziostringa("Abcdef") => "Abcd"

• The number of arguments can be variable, with some arguments going into an array:

def stampa(a,*b)
 print(a," ",b)
end

stampa("a") => a []
stampa("a","b") => a ["b"]
stampa("a","b","c") => a ["b", "c"]

Function Arguments

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 24
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

• Array arguments can be expanded to multiple values into the function, by using the "splat" operator:

def stampa(a,b,c)
 print("a=#{a} ","b=#{b} ","c=#{c} ")
end

stampa(*[1,2,3]) => a=1 b=2 c=3 # there are 3 values into the function

Blocks Given to Functions
A function can receive, in addition to the usual arguments, a block of code, between curly braces. This block is
itself similar to a function and have arguments. Arguments are at the beginning of the block , between bars: "||",

Into the function the statement yield executes the block, giving arguments to the block. The block is executed in
the environment of the calling program and sees the variables of the calling program.

Using the block a function can return many values during its execution and not only a final result.

Inside the function the yield statement returns the value of the block which is available to the function
statements. In this way the use of a block can establish a sort of communication channel between the function
and the calling environment.

In the function the statement: block_given? can test if the block has been given to the function; otherwise, if the
block is missing, the statement yield raises a "LocalJumpError".

The call syntax is:

funcname(a,b,c,d) { |x,y,z| statements and function of x,y,z .. }

The function definition syntax is:

def funcname(a,b=3,*e)

 if block_given?
 yield x1,y2,z1 # here the block is executed, with arguments x1,y1,z1
 end
 ...
 ...
end

If the yield function is inside a loop it returns a sequence of values, and the block can be executed many times,
with the element of the sequence as arguments. In this way Ruby implements iterators: methods returning
elements of a sequence of objects. Iterators are the preferred way to implement loops on sequences as arrays
and hashes.

Examples:

def iterfun(k)
 a=[1,2,3,4]
 for ia in a
 yield ia*k if block_given?
 end
end

Blocks Given to Functions

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 25
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

iterfun(1) # returns => [1, 2, 3, 4] :
 # the last evaluated object (there is no return statement)

iterfun(1){ |k| print k } => prints 1234
iterfun(2){ |k| print k } => prints 2468

In the following example two argument are passed to the block only once:

def yfunc(a)
 b=0
 a=a+1
 yield a,b
end

yfunc(1){|k,j| print(k,j)} # => 20

In the following example the "block_given?" statement is used to obtain different results depending on the block
presence:

def a_method
 return yield if block_given? # testing if the block exists
 'block missing'
end

a_method # => "block missing"
a_method { "block found!" } # => "block found!"

In the following example the value of the block, returned by the statement "yield" into the function, is used by the
function computation.

def a_method(a, b)
 a + yield(a, b)
end
a_method(1, 2) {|x, y| (x + y) * 3 } # => 10

proc and lambda
Proc objects are instances of the Proc class and hold a block of code that is executable; the attribute "call" can
be used to execute the proc:

myproc = Proc.new {|wine| puts "I love #{wine}!"}
myproc.call("sangiovese")

=> I love sangiovese!

A "proc" can be passed as an argument to a function, it must be the last argument, with an ampersand :"&"
before the proc name:

proc and lambda

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 26
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

def func(arg,arg2,arg3=default, &block)
 ..
 the name: block contains the proc

func(a,b,c,d,&procname) # ampersand also in the call

A block can also be seen as a proc into a function, it can be executed, inside the function, as a proc object, with
the call method, or with yield:

def stampa(&block)
 block.call # here the block is called as it where a *proc*
 yield # here the block is called by Yield
end

stampa { print "--AAAA " }
=> --AAAA --AAAA # the block is execute twice

Another way to create a Proc object is to use the lambda method; using this method is essentially equivalent to
calling Proc.new.

myproc = lambda {|x| puts "Argument: #{x}"}

myproc.call("ABCDE!")

=> Argument: ABCDE!

A difference between lambda and proc is that the lambda tests the number of arguments and raise an error if
arguments are not given, proc doesn't test anything

proc and lambda

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 27
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Class Definition
The definition of a class by the user is done with the "class" statement, followed by a block of statements
containing the class body, with the class definitions. The class name is a constant, and must begin with an
uppercase letter. The "class" statement is an expression and returns the last evaluated statement, usually a
"def", returning: "nil".

When the statements defining the class are executed by the Ruby interpreter, the receiver, pointed by the
keyword: "self" is the class itself, as an instance of "Class", but into the definition of instance methods "self" is
the instance being created.

class Classname < Superclasse # class definition (inherits Superclasse)

 include Modulename,Othername # the class includes these modules
 include(OtherModulename)

 attr_accessor :x,:y # creation of accessor methods
 attr_reader :u,:w
 attr_reader "v","z"

 @@n=0 # a class variable

 def initialize(x,y=3) # class constructor

 @x,@y=x,y # instance variables
 # must initialized in the constructor

 super(a, b, c) # calls the constructor of the parent
 end

 def self.classmethodname # definition of a class method
 ...
 end
 class << self # block containing class methods
 def nome(..)
 ...
 end
 end

 def metodo # definition of an instance method

 end

 to_s # override of a function of a parent class
 "description class"
 end

 protected # section for protected methods

 here protected methods

 private # section for private methods

 here private methods

Class Definition

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 28
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

end

The method named: "initialize" is the instance constructor; it is a special method, called in an automated way at
the instance creation. In this method the variables needed by the instance are initialized.

In the example above the method "super" is used by "initialize" to call the constructor of the parent class, which
is not automatically called at the instance creation.

Inheritance
The "<" symbol is for inheritance. Ruby has only single inheritance, but classes can include in their namespace
functions and classes from modules (mixins). Each class inherits the class Object in an automated way, there is
no need to specify this dependency.

The method: "super" can be used into a class function, to call the method of the parent with the same name of
the function.

There are some methods to look at the structure of a class hierarchy:

Classname.superclass # show the inherited class
Classname.ancestors # show all the inherited classes (ancestors)
Classname.methods # show all the methods
Classname.constants # show the constants defined in the class

Classname.included_modules # list of the included modules
Classname.include?(Nomemodulo) # tests if a module is included

Classname.respond_to?("string") # tests if a method exists
Classname.respond_to?(:symbol) # tests if a method exists, using a symbol

Class Instances
To instantiate a class the "new" method must be called; the "new" method has arguments that are passed to the
class constructor: the "initialize" function.

instancename=Classname.new(argument, arg, arg2)

instancename.instance_of? Classname # to test if instance of a class
instancename.kind_of? Classname # to test if a class is among ancestors

each instance has an unique identifier, which can be obtained by the method: ".object_id".

Class Methods and Instance Methods
In Ruby there are class methods and instance methods: class methods can only be called on classes and
instance methods can only be called on an instance of a class.

But indeed, class methods also are instance methods: instance methods of that instance of Class which is the
class definition.

The syntax for calling class and instance methods is:

Inheritance

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 29
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Classname.classmethodname(..) # for class methods

instance.methodname(..) # for instance methods

By default the methods are instance methods; in the class definition, class methods are prefixed with the
keyword "self", or by the class name, but can also be defined in the class block, into a special block delimited by:
"class << self ... end"

class Classe

 def Classe.func
 print("class method")
 end
 def self.func2
 print("class method")
 end

 def func3
 print("Instance method")
 end
end

class Classe2

 class << self # other way to specify class methods
 def func
 class method
 end
 end
 end

Accessor Functions and Instance Variables
The rule is that all variables defined in a class are private to the class and are not visible outside.

To make an instance variable accessible outside the class there are special function, (accessor functions)
defined in a way similar to:

class A
 def var_a # read access ids done with: *A.var_a*
 return @var_a # using the function as the var_a name
 end
 def var_a=(v) # write access is done with: *A.var_a=123*
 @var_a=v # using the function as the var_a name,
 end # with omitted parenthesis
end

The accessor statements automatically make these functions for the specified variables, allowing for a syntax
like: "instancename.variable" , where "variable" is an accessor function which mimic the use of a instance
attribute; but only functions and constants are visible outside a class instance, all variables are hidden.

Example of the accessor statement:

Accessor Functions and Instance Variables

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 30
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

class Nomeclasse
 attr_accessor :x,:y # makes accessors for @x,@y
 attr_reader :z # makes a read accessor for @z

 def initialize(x,y) # constructor, called at object creation
 @x=x
 @y=y # initialization of instance variables
 end

 def to_s # used by print functions to obtain a
 "#@x,#@y" # string representing the instance
 end
 end # of class

Instance variables should be initialized in the constructor. The class itself (the class definition) is an instance of
the object Class, and variables defined out of the constructor are instance variables of the class as an instance
of the Class object.

To print an instance of a class one have to define a to_s method, that returns a textual representation of the
instance. There are also a modules (PP, PrettyPrint) to print a class instance:

instancename= Nomeclasse.new(1,2)

require 'pp'
pp instancename # => 1,2

Adding Methods to a Class
Methods can be added to a class outside the class block; to define a class method outside the class block the
method has to be prefixed with the class name:

def Classname.classmethodname(..)

end

Singleton Methods
A method belonging to a single instance of a class is named "singleton method, "numeric" and "symbols" can't
have singleton methods. A singleton method can be added to a specific instance in the following way:

oggetto=Classname.new
def oggetto.funzione(..)
 ...
end

Also the following syntax can be used:

class << oggetto

 def func1(..)
 ...

Adding Methods to a Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 31
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

 end

 def func2(..)
 ...
 end
end

In the following a simple example of definition and usage of a singleton method:

a="1"
def a.nome
 print "uno"
end

a.nome => uno

The term singleton class is used in Ruby for class instances with singleton methods, which is not the same as
the singleton classes of languages like C++, which are classes with a single instance ... here the term "singleton"
is a bit confusing.

In Ruby, classes with a single instance are built with the "singleton" module, which, mixed into a class, changes
the class method "new", which become private and impossible to call; the methods "instance" is used, instead of
"new", to make, or refer to, the single instance of the class.

Adding Methods to a Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 32
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

The Object Class
The class "Object" is the main class in the Ruby language. The "Kernel" module, containing most of the basic
functions, is mixed into the Object class, and the Object class is inherited by all the Ruby classes, making all its
methods available to every instance of every class.

Among the methods in the Object class, some are used to find the class of an object, to test methods of an
object , to interact with the operating system. Some of these methods are listed in the following table.

Method Function Examples

nil? test if nil (only a nil value returns true) Es,: nil.nil? => true

is_a? ; kind_of? tests if class or ancestor 1.is_a? Numeric => true

instance_of? tests if instance of a class 1.instance_of? Fixnum => true

respond_to? test if a class method 1.respond_to?('+') => true

methods array with public methods Object.methods => [:allocate, :new,....]

method returns a Method object 1.method("+") => #<Method: Fixnum#+>

send calls a method on an instance 1.send("+",2) => 3

clone clones an object s2=s1.clone

dup makes a shallow copy of an object (copies only the references, not the data)

abort stops the program abort("messaggio")

exit exits from the program, raising SystemExit. Es.: exit(1)

exit! exits, skipping then exception handling mechanism

fork creates a sub-process

exec executes a process, in place of the current one. exec("ls")

spawn executes a command in a subshell. spawn("ls")

sleep(s) pause the program for some seconds sleep(5)

system executes a system command. system("ls")

command command for the system ls => lists current directory

%x{command} command for the system as ``, but using a different separator

warn writes a message on stderr. warn("attention")

eval evaluates a ruby expression. a=1;b=2; eval("a+b") =>3

load loads and execute a ruby program. load("nomefile.rb)

freeze makes an object immutable

frozen? tests if an object is immutable

The class Object has also methods to build basic objects: Integer, Float, Complex, Rational, Array and String.

The operator: "===" is used to test if an object is an instance of a class or an instance of its descendants, the
descendants redefine the operator to allow for comparison. This operator is mainly used in the "case" statement.

In Ruby there aren't immutable objects, as in Python. All objects can be changed, but there is a method: freeze,
which prevents every change in a single object, making that object immutable. A freezed object can't be
unfrozen.

The Object Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 33
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Logical Classes
There is no boolean class in Ruby, but two special classes: TrueClass, FalseClass. These classes have an
unique instance: true and false representing the results of logical expressions.

There is also: "nil", the unique instance of NilClass, meaning a missing or undefined value; nil evaluates to
false, but all valid numbers, zero included, evaluated to true, and also void strings, void arrays or hashes
evaluates to true.

"nil? (a method of Object) return true if an object evaluates to nil,

The operator: "defined?" returns nil if an object is not defined; there are no true? or false? operators, it's easy
understand why: in Ruby everything is true.

TrueClass, FalseClass and NilClass implement the logical operators: "& | ^". The NilClass implements also some
conversion operators, to change nil objects into void objects (but void objects don't evaluate to nil):

nil.to_a => [] : empty array
nil.to_c => (0+0i) : complex zero
nil_to_s => "" : empty string
nil.to_f => 0.0 : zero
nil.to_i => 0
nil.to_r => (0/1) : rational zero

Logical Classes

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 34
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Numeric Classes
In the figure the class hierarchy of the numeric classes; some methods of the classes are listed in the figure.

The classes for numbers are: Float, Complex, Integer, Rational; there are two subclass of Integer: Bignum
and Fixnum; Bignum are numbers with an arbitrary number of digits; Fixnum are 8 bytes long integers, (but
different platform can have different lengths); conversion between Bignum and Fixnum is automatically managed
by Ruby: when a number is less than about 4E9 it's a Fixnum, otherwise it is a Bignum. Integer numbers can be
built with the Integer method, converting its argument to an integer. Integers can also be expressed in
hexadecimal, octal or binary form:

0x is the prefix for hexadecimal representations

0b is the prefix prefix for binary representation

0 is the prefix prefix for octal representation

Floats are double precision , always a digit is needed before and after the point: ".1" or "1." are not valid float
numbers. "e" or "E" is before the (optional) exponent. Float numbers can be built with the Float method,
converting its argument to a float number.

Numeric Classes

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 35
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

There are two special values for floats: "infinite" and "nan", to deal with float division by zero, but integer division
by zero raises the exception: ZeroDivisionError

0.0/0.0 => NaN
1.0/0.0 => Infinity

0/0 => ZeroDivisionError:

Rational numbers are the ratio of two integers, used to express periodic numbers without a loss of precision.
Complex numbers are printed as sum of a real and an imaginary part. Es.: (2+5i) .

Rational and complex have some specific methods and can be built with the "Rational and Complex methods:

 Complex(1) => (1+0i)
 Complex(2, 3) => (2+3i)
 Complex(0.3) => (0.3+0i)
 Complex('0.3-0.5i') => (0.3-0.5i)

 Complex(2, 3).real => 2 # real part
 Complex(2, 3).imag => 3 # imaginary part)
 Complex(2, 3).conj => (2-3i)

 Complex(0,1).phase => 1.5707963267948966 # radians
 Complex(0,1).polar => [1, 1.5707963267948966] # modulus, phase
 Complex(0,1).rect => [0, 1] # Array with real and imaginary parts

 a=Rational("1/2")
 a=1.quo(5) # division between integers that gives a rational number

 Rational(1) => (1/1)
 Rational(2, 3) => (2/3)
 Rational(4, -6) => (-2/3)
 Rational('0.3') => (3/10)
 Rational('2/3') => (2/3)
 Rational('0.5') => (1/2)

(Rational(3,2)).numerator => 3
(Rational(3,2)).denominator => 2
(Rational(3,2)).truncate => 1
(Rational(3,2)).round => 2

Underscores can be used inside numbers to separate digits:

a=1_000_000 => 1000000
b=2_000.0_1 => 2000.01

Methods for the Numeric Classes
All numerical operators are implemented as methods of the Numeric class: for this reason a function-like
notation is legal for operators: "1.+(2)" can be used, and returns the number 3, as: "1+2".

The comparison operators: < ; > ; <= ; >=, == ; between? are implemented in the Comparable module; each
numeric class implements in a different way only the operator: <=> (sometimes named: spaceship operator); the
Comparable operators use the <=> operator of the specific class to give results. This mechanism is similar to the
use virtual functions of the C++ language.

Methods for the Numeric Classes

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 36
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

In the following table the most used methods of Numerics are included, also those which apply only to some
subclasses of Numerics.

Operator Function Examples

** ; pow(x,y) power a**3

* / Multiplication,division a*b ; 3*2 => 6 ; 3/2=1

% Remainder 5/2. => 1.0

+ - Addition, subtraction a+b ; 2+5 => 7

<< >> bitwise shift 4<<1 => 8

& | ^ bitwise and, or, xor

<=> comparisons, returns: -1, 0 , 1 ; if less, equal greater

< > <= >= comparisons 4<1=> false

between? inclusion in a range 2.between?(1,4) => true

== != equal, not equal

zero? true if zero 3.2.zero? => false

eql? same value AND type 1.0.eql? 1 => false

equal? reference equality: if a is the same object as b: a.equal?(b) => true

abs ; magnitude Absolute value -1.abs => 1

abs2 square modulus -2.abs2 => 4

ceil minimum greater integer 1.2.ceil => 2 ; -1.2.ceil => -1

floor maximum lower integer 1.7.floor =>1 ; -1.2.floor =>-2

round rounds a number 1.4.round => 1 ; 1.5.round => 2

div integer division 5.2.div(2.0) => 2

divmod quotient and remainder 5.divmod(2) => Array :[2, 1]

fdiv float division 3.fdiv(2) => 1.5

quo division with maximum precision (Rational numbers if integer operands)

Methods for Integers

even? true if even 2.even? => true

odd? true if odd 3.odd? => true

next ; succ next integer 1.next => 2

pred previous integer 2.pred =>1

gcd greatest common denominator 10.gcd(15) => 5

lcm lowest common multiple 10.lcm 15 => 30

Methods for Integers

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 37
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Methods for Floats

finite? true if finite (1.0/0.0).finite? => false

infinite? test if infinite (-1.0/0.0).infinite? => -1

nan? test if not a number (0.0/0.0).nan? => true

Conversion Methods

to_s # converts to string, for fixmum the argument is the base, es.:

 16.to_s => "16" ;
 16.to_s(2) => "10000" ;
 16.to_s(16) => "10"

to_i # converts to integer;

to_f # converts to float;

to_r # converts to rational

Subscript Operator
The subscript operator "[]" can be used for Fixnum, and returns single bits of a number:

2[0] => 0
2[1] => 1

3[0] => 1
3[1] => 1
3[2] => 0

Methods for Floats

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 38
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Precedence for operators
In the following some operators are listed, ordered by precedence (high to low precedence):

[] []=
**
! ~ + - (unary operators)
* / %
+ -
>> <<
&
^ |
<= < > >=
<=> == === != =~ !~
&&
||
.. ...
?:
= %= /= -= += |= &= >>=
 <<= *= &&= ||= **= ^=
not
or and
if unless while until
begin/end

Precedence for operators

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 39
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

String Class
In Ruby strings are sequences of characters, but can also be used to store binary data as sequences of bytes. A
string can be created from a sequence of characters:

a=String.new("characters")

Ruby has a complete set of functions to deal with strings. Strings are basic objects in Ruby, inherit Objects and
include the Comparable module, which implements the basic operator for comparison: < ; > ; <= ; >=, == ;
between?.

String comparison is based on the order of characters in in the ASCII sequence, where there are: first numbers,
then uppercase letters, then lowercase ones. If the first characters of two strings are the same, then the longer
string is considered greater:

'0'<'A' => true
'A'<'a' => true
'a'<'b' => true

'azzz'<'baaa' => true # the first different characters matters!
'aab'<'abb' => true
'abc'<'abc0' => true # the second string is longer

String Encoding
In Ruby each string has it's own encoding, which can be obtained by the method: encoding; the default
encoding is UTF-8 for Ruby version 2, US-ASCII in Ruby 1.9; all strings where ASCII in Ruby 1.8.

The encodings are described by the Encode class. The class method Encode.list return an array with the list of
all the available encodings.

In a source file the encoding of the file can be specified in the first lines:

#!/usr/bin/ruby
coding: utf-8

Some operations between strings can't be done if their encoding is not compatible; the encode method can be
used to change the encoding of a string; this method has options to deal with undefined or invalid characters in
the new encoding and to change the final newline character; there is also a force_encodig method that sets the
encoding property of a string:

'a'.encoding => #<Encoding:UTF-8>

b='a'.encode("ISO-8859-1")

b.encoding => #<Encoding:ISO-8859-1>

b.encode!("UTF-8") # encode! changes the string on-place

b.encoding => #<Encoding:UTF-8>

"abcd".encode("UTF-8", undef: :replace, replace: "X") # "X" replaces undefined characters
"abcd".encode("UTF-8", invalid: :replace, replace: "X") # "X" replaces invalid characters

String Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 40
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

b='a'.encode("ISO-8859-1")
b.force_encoding("UTF-8") # tells to Ruby that b is an UTF-8 string,
b.encoding => #<Encoding:UTF-8> # but 'b' is not changed

Double-quoted String
Strings can be created from characters between double quotes;

Es.: a="stringa"

An alternative syntax is: %Q(string) ; where the string inside parentheses can contain double quotes, but not
the parentheses, which are used as a string delimiter. You can use the delimiters you like instead of
parentheses, but if you use parentheses the initial and final delimiters must match: {} [] () <>

a="stringa\n"
a=%Q(abcd\n) # () are used as delimiters
a=%QZ 12 ef(), Z # 'Z' is used as a delimiter

double quoted strings can extend over many lines, preserving the newline character. The backslash can be used
to escape the final newline, to effectively join two lines.

Between double quotes all the usual backslash substitutions are performed:

\n end of line

\b backspace

\e escape

\s space

\t \v tabs

\f \r form-feed, return

\hhh ottale

\xhh exadecimal

\uxxxx unicode

\C-x control-x sequence

\M-x meta-char sequence

Single-quoted Strings
Strings can be created from characters between single quotes, when single quotes are used only some
backslash substitutions are performed: "\\" and "\`" .

Es.: a='stringa'

an alternative syntax is: %q(string) ; the string inside parentheses can contain single quotes, but not
parentheses You can use the delimiter you like instead of parentheses, but if you use parentheses the initial and
final delimiters must match: {} [] () <>

a='stringa'
a=%q(stringa) # () are used as delimiters
a=%qA xyx string aad A # The letter 'A' is used as a delimiter

Double-quoted String

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 41
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

A string between single quotes can extend over many lines , the end of line is not escaped, but inserted into the
string as "\n"

String Operators
In the following table a list of some methods of the String class.

+ concatenates strings: "a"+"b" => "ab"

* repeats strings: "abc" * 2 => "abcabc"

<< concatenates strings: "a"<<"b" => "ab"

ascii_only? true if only ascii characters

empty? true if empty

end_with?("string") true if end with the given string

include?("substring") test if substring included: 'abc'.include?(b)=> true

index("substring") index of a given substring: 'abc'.index('b') => 1

rindex("substring") index of a given substring starting from the end

insert(index,string) substring insertion: "abc".insert(1,"xx")=>"axxbc"

split(pattern) splits into an array, default pattern is a space

capitalize ; capitalize! makes the first character uppercase

upcase ; upcase! to upper cases; upcase! changes string in place

downcase ; downcase! to lowercase

swpacase ;swapcase! upper case to lower and lower to uppercase

sub(pattern,replacement) first occurrence substring replacement

gsub(pattern,replacement) all occurrence substring replacement

tr('old char','new') .tr! change characters, as the "tr" Unix command

center(n," ") centers in n characters, specifying the padding character

ljust(n," ") shifted to left, in n characters, padded with space

rjust(n," ") shifted to right

lstrip ; lstrip! strip leading spaces

rstrip ; rstrip! strip final spaces

strip ; strip! strip final and leading spaces

squeeze(characters) ;squeeze eliminates duplicates for the given characters

reverse ; reverse! reverse the string

clear empties the string

replace(newstring) replaces the string with a new one

chomp ; chomp! strips the final end of line, if present

encoding returns the string encoding

valid_encoding? if a valid encoding

String Operators

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 42
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

encode("iso-8859-1") ; encode! re-encode the string in the given encoding

force_encoding("utf-8") tell the encoding to Ruby

to_i ; to_f conversion to numbers

length ; bytesize length in characters or bytes

getbyte(num) get a single byte at a given position

setbyte(num) set a single byte at a given position

bytes.to_a byte contents: "ab".bytes.to_a =>[97, 98]

count("substring") counts how many times the substring is found

count("a-c") count characters

delete("chars") delete!("b") delete characters

crypt crypt the string using the operating system function

sum computes a simple checksum for the string

next ; succ next in the ascii sequence: "a".next => "b"

ord encoding number of first character : "ab".ord => 97

If the argument of the "<<" operator is a number it is intended as the the numeric code of a character in the
encoding of the string; the corresponding character is appended to the string:

"a"<<"b" => "ab"
"a"<<98 => "ab"

• The function "chars"

It is used to separate a string into an array of characters (produces an Enumerator object):

"string".chars.to_a => ["s", "t", "r", "i", "n", "g", "a"]

• count and delete

these functions are very versatile: can count or delete ranges of characters, characters out of a range
etc.:

"abccd".count("a-c") => 4 ; "abccd".count("^a-c") => 1 ;

"abcdeff".delete("a-cf") => "de"

• sub and gsub

these functions can have a regular expression or a string as the pattern argument, and also the
subsequences of the match can be used:

"abcdcde".sub("cd","xy") => "abxycde"

"abcdcde".gsub("cd","xy") => "abxyxye"

• slice

can be used to extract substrings, as the [] operator; the version: slice! changes the string in place:

"abcde".slice(2..4) => "cde"
"abcde".slice(1,3) => "bcd"

String Operators

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 43
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

"abcde".slice("bcd") => "bcd"

• The "?" operator

this operator gives the representation of a single character in a string:
?a => a ; ?C-d => "u0004" # this is the unicode for Cntrl/d

• The [] operator

this operator can be used to extract characters from strings, it will be described in the section about
Arrays

• String interpolation:

A Ruby expression can be inserted into a string, and its result is computed and used into the string:

"stringa #{ruby statements } ... "

• The format operator "%" :

this operator acts the same as in the printf routine of the C language:
" string with %s %d " % ['abc',123] => " string with abc 123 "

• The plus operator "+"

this operator is used to concatenate strings.
"abc"+"def" => "abcdef"
Strings following strings are automatically concatenated:

a='asd' 'asd' => "asdasd"

• The operator "*"

this operator is used to repeat strings.

"a"*3 => "aaa"

• Here documents:

very long string can be inserted in the following way:

nomestringa = <<HERE
 here a long text

HERE

HERE is an arbitrary word, used as a delimiter, the final delimiter is alone, on a single line. No space is
allowed between "<<" and the first delimiter, or after the last delimiter.

String Operators

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 44
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Array Class
Arrays are sequences of heterogeneous elements, are represented as a comma separate list between square
brackets; an integer index, between square brackets is used to refer to single elements; We can have arrays of
arrays, simulating multi-dimensional structures.

The class mixes in the Enumerable module , with a lot of iterators.

In the following figure the hierarchy of the Array and Hash classes; some class methods are listed in the square
box.

Arrays can be created in the following ways:

a=Array.new : an empty array

a=Array.new(3) : to make an array of 3 elements containing "nil"

a=Array.new(3,"a") : to make an array of 3 elements containing the object: "a"

a=[12,"asd",3.5E3,1,2,3] : another way to make an array

To make an array from words in a string:

Array Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 45
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

a= %w{ a b c d \n } => ["a", "b", "c", "d", "\\n"]

a= %W{ a b c d \\n } => ["a", "b", "c", "d", "\n"]

if "%w" is used, backslash symbols are not interpreted, as in single-quoted strings. If "%W" is used, backslash
are interpreted as in double-quoted strings

The "split" function can obtain an array from a string, the "join" function obtains a string from an array.

The '*' operator can act as a join for arrays, if the second operator is a string:

"1-2-3".split("-") => ["1", "2", "3"]
[1,2,3].join("-") => "1-2-3"

[1,2]*"a" => "1a2"

Some operators and functions for arrays are listed in the following table:

+ concatenates: "a"+"b" => "ab"

- difference: [1,1,2,3] - [1,2,4] => [3]

* array repetition: [1]*2 => [1, 1]

concat concatenates: [1].concat([2]) => [1, 1]

& common elements: [1,2] & [2,3] => [2]

| add without duplicates: [2,2,3] | [1,2,4] => [2, 3, 1, 4]

<< append elements: [1]<<2 => [1, 2]

include?(value) true if the value is included: [1,2].include?(1) => true

empty? true if empty

length number of elements

count counts elements: [1,2,1].count => 3 ; [1,2,1].count(1) => 2

compact ; compact! removes nil elements

uniq ; uniq! remove duplicates: [1,2,2].uniq => [1, 2]

delete(value) fetches and deletes an item, given its value

delete_at(n) fetches and deletes an item, given the position

insert(index,value) insert at the given position: [1,2].insert(1,5) => [1,5,2]

fill(value) change each element to the given value

first(n) first elements: [1,2,3].first(2) => [1, 2]

last(n) last elements: [1,2,3].last(2) => [2, 3]

max maximum element: [1,3,2].max => 3

min minimum element: [1,3,2].min => 1

flatten makes uni-dimensional: [[1,2],[3,4]].flatten => [1,2,3,4]

transpose in 2-dimensional transposes row and columns

join(separator) joins elements into a string: [1,2].join("-") => "1-2"

Array Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 46
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

combination(n).to_a array with the all combinations of n elements of the array

permutations(n).to_a all permutations of n elements

repeated_combination(n) all combinations with repetitions

repeated_permutations all permutations with repetitions

replace(newarray) replaces with an other array

reverse ; reverse! reverses the order o f elements

rotate(n) ; rotate!(n) circular shift: [1,2,3].rotate(1) => [2, 3, 1]

sample(n) extracts n random elements

unshift(1) add a first element [1].unshift(2) => [2, 1]

shift(n) extracts and deletes first n elements

push(value) add an element at the end: [1].push(2) => [1, 2]

pop(n) extract and deletes elements from the end

shuffle ; shuffle! random reordering

sort ; sort! sorts elements:[2,1].sort=>[1, 2]; ["b","a"].sort=>["a","b"]

to_s a string representing the array

flatten has an optional argument: the number of dimension to eliminate:

a=[1,2,[13,14],[15,[26,[37,38]]]]

a.flatten(1) => [1, 2, 13, 14, 15, [26, [37, 38]]]

a.flatten(2) => [1, 2, 13, 14, 15, 26, [37, 38]]

a.flatten(3) => [1, 2, 13, 14, 15, 26, 37, 38]

a.flatten => [1, 2, 13, 14, 15, 26, 37, 38]

to_a, a member Enumerable, creates an array from a sequence.

zip combines arrays element by element, producing an array of arrays:

(1..3).zip ["a","b","c"] => [[1, "a"], [2, "b"], [3, "c"]]

[1,2,3].zip([10,20,30],["a","b","c"]) => [[1, 10, "a"], [2, 20, "b"], [3, 30, "c"]]

(1..3).zip => [[1], [2], [3]]

The Subscript Operator: []
"[]" returns single bits for numbers, characters for strings, elements of arrays; inside the square brackets we can
have numbers, ranges or also regular expressions:

a=[1,2,3,4] ;

a[0] => 1 # index begins from zero

The Subscript Operator: []

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 47
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

a[-1]=> 4 # negative indexes from the end
a[a.size-1] # last element

a[0..2] => [1, 2, 3] # extracts using a range (last element included)
a[0...2] => [1, 2] # extracts using a range (last element NOT included)
a[-4..-2] => [1, 2]

a[0,2] => [1, 2] # a sub-array (2 elements from 0)
a[1,2] => [2, 3] # 2 elements , from 1
a[-3,2] => [2, 3] # 2 elements , from -3 (a[-3]=> 2)
a[-4,2] => [1, 2] # from element -4 (the first) takes 2 elements

a[/regular expr/] # regular expressions can be used too

a.first(2) => [1, 2] # first elements
a.last(2) => [3, 4] # last elements

a=[1,2,3,4] ; a=['a','b']=> ["a", "b", 2, 3, 4] # reassigns a range of elements

An element is changed or added with the "[]=" operator; nil elements are created to void the gaps:

a=[0] ; a[3]=3 => [0, nil, nil, 3]

a=[1,2,3,4]
a[0,2]=0 => [0, 3, 4] # starting from position 0, sets 2 elements

a=[1,2,3,4]
a[0,2]=5,6 => [5, 6, 3, 4] # multiple assignments are possible
a[0,2]=[5,6] => [5, 6, 3, 4]

a=[1,2,3,4]
a[-1]=9 => [1, 2, 3, 9] # negative indexes counts from the end

Hash Class
Hashes, also named maps, or associative arrays, or dictionaries, are sequences of objects, not retrieved by an
integer index, but by a key, which can be any object. Hashes are written as key/value pairs, separated by an
arrow, in curly braces, Es.: (1=>"a",2=>"b"}

Hashes mixes in the Enumerable module, with a lot of useful iterators.

The elements are in the order in which they have been inserted in the hash; the last element being the last
inserted.

The attempt to access to a non-existing elements returns nil or a default value which can be set at the hash
creation or with the default= method.

For hashes the operator "[]" returns values, based on keys; symbols can also be used as keys, for a faster
access::

a={"one" => 1, "two" =>2 ,3 => "a"}

a["one"] => 1

Hash Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 48
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

a[3] => "a"

h["a"]=723 # adds, or replaces, en element

h={ :one => 1, :two =>2 } # symbols can be used as keys

h={one: 1 , two: 2 } # alternate syntax, possible when keys are symbols

Operators and methods for hashes are listed in the following table:

a=Hash.new makes an empty hash

a={} makes an empty hash

a=Hash.new("default") makes an empty hash defining the default value

default returns the default value

default= sets the default value

delete deletes an element by key Es.: h.delete("one")

fetch fetches element by key: h.fetch(key)

has_key? ;include? : key? True if a key is present: h.has_key?(k)

has_value? true if a value is present: h.has_value?(val)

merge ; merge! merges hashes, duplicate keys are overwritten: h.merge(h2)

sort sorted array of pairs: [[key1,value],[key2,value]..]

flatten(n) array with keys and values, with n dimensions flattened

invert keys become values and values keys

flatten(n) array with keys and values, with n dimensions flattened

empty? true if the hash is empty: {}.empty? => true

length ; size number of elements

values array with values

h.keys array with keys

h[key] a value, given the key (the default value if key not found)

h[key]=value adds, or changes, the value for a given key

key(value) a key, given a value

clear voids an hash

sort an ordered array of [key,value] ,ordered by keys

shift extracts and remove the first [key,value] pair

to_a array of [key,value] pairs

to_s a string representing the hash

Hash Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 49
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Range Class
Range objects represent an interval in a sequence, are mainly used in loops and case statements, but also as
indexes of arrays and strings. Ranges mixes in the module Enumerable, with a lot of iterators.

Ranges are written as two numbers or characters separated by two or three dots. When three dots are used the
last object is not included, when two are used the last element is included.

Not only numbers or characters can be used to make a Range object, but every object which can be treated as a
sequence, responding to the comparison method: "<=>" and the "succ" method (which gives the next item of the
sequence).

The Range method can be used to built ranges:

a=Range.new(1,3)
1..3 => 1,2,3 # last element is INCLUDED

a=Range.new(1,3,true)
1...3 => 1,2 ; range with last element NOT INCLUDED

(1...3).exclude_end? : true

-3..-1 => -3,-2,-1

'a'..'c' # range of characters

 1.2..3.5 # range of float (but you can't iterate on these)

 a=[0,1,2,3,4]
 a[1..3] => [1, 2, 3]
 a[1...3] => [1, 2]

We can have array of ranges, in this case ranges are not expanded to the sequence they represent, there is
nothing as the list comprehension of Python, and, to built an array of values from the range, the "to_a" method
must be used.

a=[1..3,5...9] => [1..3, 5...9]

Some methods of ranges are in the following table:

exclude_end? tests if last value is included: (1...3).exclude_end? => true

cover? tests if between bounds: (1...3).cover?(2.5) => true

include? ; member? tests if member of the range: (1...3).include?(3) => false

begin the range begin: (1..3).begin => 1

end the range end: (1...3).end => 3

first(n) first n elements: (1..3).first(2) => [1, 2]

last(n) last n elements (1..3).last(2) => [2, 3]

min minimum value (1...3).min => 1

max maximum value: (1...3).max => 2

to_a converts to array: (1..3).to_a => [1, 2, 3]

to_s string representation (1..3).to_s => "1..3"

Range Class

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 50
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Regular Expressions
Regular expressions are special string patters of characters, used with strings, for substring search and
substring substitutions. It's a powerful, but complicated tool; for an introduction to regular expressions see:
http://en.wikipedia.org/wiki/Regular_expression .

In Ruby regular expressions are build into the language, as the "Regexp" class. The matching with a a string is
done using the match operator: "=~", or by the method: match. The to_s method give a string representation of
a Regexp object.

Regular expressions are created by the Regexp constructor method, from a string pattern between "/ /" or with
the "%r" operator: r=%r{pattern}:

r=/pattern /

r=/pattern /options

r=%r{pattern} # every character can be used in place of "{}"

r=%r{pattern}options # a regular expression with options

r=Regexp.new(pattern,options)

A regular expression can have options, some options are:

i : case insensitive search
o : a substitution is performed only once
m : the dot match also \n
x : extended syntax
 (pattern can contain comments and other constricts)

In regular expression patterns the backslash is used as an escape characters and some special constructs are
interpreted according to the following table:

. the dot matches any character

+ one ore more of the preceding substring

* zero or more of the preceding substring

? one or zero of the preceding substring

[abc123] one of these characters

[^aeiou] a character not in the list; not a vowel for: [^aeiou]

[a-c] a range of characters

[^a-c] a character not in the range

a|b logical or for characters ("a" or "b")

{m} m times the preceding substring

{n,m} min m and max m occurrence of the preceding substring

{,m} at least m times

{,n} at most n

Regular Expressions

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 51
Downloaded from http://www.helldragon.eu/

http://en.wikipedia.org/wiki/Regular_expression
http://www.helldragon.eu/

^ the beginning of a line

$ the ending of a line

\Z ending of a string

\A beginning of a string

\b word boundaries

\B non word boundaries

\s space characters (and also \n \t \r \f)

\S NON space characters

\d a digit, same as [0-9]

\w a word character, same as [A-Z,a-z,0-9_]

\W a non word character

() to group characters into a sub-pattern

\1 \2 substrings matched by a preceding sub-pattern

The operator: "~=" returns the index of the first match or nil if the match didn't occur; the match method returns
instead a MatchData object with members containing the results of the match.

If sub-patterns are used, the substrings matched by the sub-patterns are also saved. String matched by
sub-patterns can be used also into the match pattern itself.

The match methods have the following syntax:

string =~ /pattern/ # returns a number or nil:
 n= string =~ /pattern/

/pattern/.match(string) # returns a MatchData object:
 matchdata = /pattern/.match(string)

string !~ /pattern/ # is the same as !(string =~ /pattern/)

After a match some global variables, and a Matchdata object, are defined, the Matchdata object is saved in the
global variable: "$~

$& matchdata[0] the matched part of the string

$' matchdata.pre_match the part preceding the match

$` matchdata.post_match the part after the match

$1 $2 matchdata[1] strings matched by sub-patterns

matchdata,size size of the matched string

Regexp objects are also used for string substitution, using the sub and gsub methods; sub makes a single
substitutions, gsub changes all the occurrences of the match:

"string".sub(/pattern/,"replacement string")

"string".gsub(/pattern/,"replacement string") # gsub for multiple substitutions

Regular Expressions

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 52
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

"string".sub!(/pattern/) # sub!: for on-place replacement
"string".gsub!(/pattern/)

A block of statements can be associated to the sub and gsub methods, these blocks have, as argument, the
matched string; the result of the block is substituted into the string (blocks of statements will be described
further):

"string".sub(/pattern/) { |p| statements } # "p" is the matched string
"string".gsub(/pattern/) { |p| statements }

Patterns can be used to subdivide a string, by using the scan method:

"one word or two".scan(/\w+/) => ["one", "word", "or", "two"]

"one word or two".scan(/\w+/) {|w| statements } # also passing matches to a block
"string".scan(/(t).*(n)/) { |a,b| print a,b } # sub-matches given to the block

Examples of regular expression usage:

match position matched string meaning

/abc/ =~ "012abc34" 3 "abc" "abc" substring

/^abc/ =~ "012abc34" nil nil not "a", then "bc"

/d+/ =~ "012abc34" 0 "012" some digits

/.+s.+/ =~ "123 abc" 0 "123 abc" first space between characters

/4$/ =~ "4234" 3 "4" "4" at the end

/(34)$/ =~ "34234" 3 "34" "34" at the end

/^(34)/ =~ "34234" 0 "34" "34 at the beginning

/3{2}/ =~ "12343312" 4 "33" "3" two times

/[0-9]/ =~ "abc3de" 3 "3" a character in a range

/(dd):(dd)/=~"a12:30" 1 "12:30" subpattern: $1=>"12"; $2=>"30"

Regular Expressions

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 53
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Other Builtin Classes
There are many other classes builtin into the Ruby interpreter, some of these are:

• Dir

to manage directory and files, with functions as: chdir, pwd, exists?, mkdir, new, delete.
There are also some iterators on files.
Dir.pwd is the current directory.

• Exception

to manage exceptions with methods: message , status, success? (true is status zero or nil)
to_s : a string representation of the message

• File

represents files, with all the unix functions for files and more, as: atime, ctime, dirname, executable?,
directory?, file? ,exists?, readable? ,zero?, truncate, delete, new, rename, ftype, lstat ,link, symlink,
path, size, stat

• IO

for input/output and functions as: new, pipe, open, read, write, sync, eof?, and many iterators on the
file content.

• Mutex

a semaphore for synchronization of accesses to resources

• Random

random numbers

• Struct

A mini-class to contain strings which can be accessed by symbols:

Customer = Struct.new(:name, :surname) # => makes the Customer object

c1=Customer.new("giovanni", "bianco") # makes instances
c2=Customer.new("giovanna","rossi")

c1.name => "giovanni" # using builtin accessors
c1["name"] => "giovanni"

c1.members=> [:name, :surname] # using symbols as accessors

c1.to_a => ["giovanni", "bianco"]

c1.to_h : make an hash (only for Ruby 2)

• Thread

to manage threads , with function as fork, kill , new, stop.

• Time

class for time and date:

t = Time.at(0) => 1970-01-01 01:00:00 +0100

t1= Time.gm(2000,"jan",1,20,15,1) => 2000-01-01 20:15:01 UTC

Other Builtin Classes

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 54
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

t2= Time.local(2000,"jan",1,20,15,1) => 2000-01-01 20:15:01 -0600

t3= Time.new(2010, 12, 25, 8, 0, 0, "-06:00") # => 2010-12-25 08:00:00 -0600

tn=Time.now => 2014-08-27 16:04:34 +0200

tn.getgm => 2014-08-27 14:06:40 UTC # convert from local to UTC

Time.now.asctime => "Wed Aug 27 16:05:51 2014" # as an ASCII string

tn.strftime(special string) # formatted as in the printf function of C
tn.strftime("today is %d/%m/%Y %H:%S") => "today is 27/08/2014 16:40"

tn.to_a => [40, 6, 16, 27, 8, 2014, 3, 239, true, "CEST"] # as an array

to_f ; to_i => giulian seconds from 1870

localtime ; gmtime ; => convert times in place

Parts of the data can be obtained by:

t = Time.at(0)

t.min ; t.sec ; t.hour;
t.hour ; t.day ; t.mon; t.year; t.zone ;
t.wday ; t.mday;

t.sec ; t.usec ; t. nsec => in julian seconds, microseconds, nanoseconds

Other Builtin Classes

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 55
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Iterators

The Enumerator Class
The concept of iterator is implemented, in Ruby, by the Enumerator class, most iterator methods return an
object of this class.

An Enumerator has the method to_a to produce an array, the method next to extract (and delete) an element, a
method peek to fetch the current value (without deletion), a method rewind to begin again the sequence and a
method each that loops over the elements giving them, in turn, to a block:

a=Enumerator.new([1,2,3])

a.each {|k| print k} => 123

a.next => 1
a.next => 2 # extract, and consume the element
a.peek => 3 # only fetch the current element
a.peek => 3 # always the same element without a "*next*"
a.next => 3
a.next => raise a StopIteration exception

a.rewind # to begin again the sequence
a.next => 1

The Enumerable Module
Most iterators are implemented in the Enumerable module; this module is mixed into classes which contain
sequences: Array, Hashes, Range, Struct, IO and Dir; since Ruby 1.9 the class String doesn't use the
Enumerable module but implements all its own iterators.

Some member of the module Enumerable are listed in the following table:

all? true if all the elements are true. Es.: [0,true,nil].all? => false

any? true if some elements is true. Es.: [0,true,nil].any? => true

collect ; map array obtained by the block: (1..2).collect {|a| a*2} => [2, 4]

count counts true values from block: (1..6).count {|a| a<3 } => 2

cycle(n) cycles n time over the sequence: [1,2].cycle(2) {|a| print a} => 1212

detect return the first true element: (1..6).detect {|a| a>3 } => 4

drop(n) array without the first n elements: [1,2,3,4].drop(2) => [3, 4]

drop_wile drops until block returns true: [1,2,3,4].drop_while {|a| a < 3 } => [3, 4]

take_while take until block returns false: [1,2,3,4].take_while {|a| a < 3 } => [1, 2]

each_slice(n) loops on groups of n values:(1..4).each_slice(2){|a| print a}=>[1,2][3,4]

each_with_index value and index to the loop:(1..3).each_with_index{|a,i| print
a,i}=>102132

find_all ; select all elements for which the block is true: (1..3).find_all {|a| a>1}=>[2, 3]

reject all elements for which the block is false: (1..3).reject {|a| a>1} => [1]

Iterators

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 56
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

find_index index of first element giving a true block: (1..3).find_index{|a| a>1} => 1

first(n);take(n) first n elements: (1..4).first(2) => [1, 2]

grep(pattern) array of matching elements:["a","b","c"].grep(/b|c/){|i| i}=>["b","c"]

include? true if an element is included: (1..3).include? => true

max maximum value: (1..3).max => 3

min minimum value: `` (1..3).min => 1 ``

max_by value giving the greater block: (1..3).max_by {|a| 1.0/a } => 1

min_by value giving the smaller block: (1..3).min_by {|a| 1.0/a } => 3

minmax minimum and maximum value (1..3).minmax => [1, 3]

one? true if the block return true only once: (1..3).one? {|a| a==2 } => true

none? true if the block is always false (1..3).none? {|a| a==2 }=> false

reverse_each loops in reverse order: (1..3).reverse_each {|a| print a } => 321

sort sort elements: [3,2,1].sort => [1, 2, 3]

sort_by sorting based on the block: (1..3).sort_by {|a| 1.0/a } => [3, 2, 1]

flat_map can be used to build an array, by appending consecutive results of the block:

(1..2).flat_map{|a| [a,a+10,a+20]} => [1, 11, 21, 2, 12, 22]

group_by can be used to build an hash, the block gives the keys:

(1..3).group_by { |a| a+100 } => {101=>[1], 102=>[2], 103=>[3]}

minmax can have an associated block, giving a comparison expression which utilized the "<=>" operator;

also sort can have an associated block:

(1..3).minmax {|a,b| 1.0/a <=> 1.0/b } => [3, 1]

(1..3).sort {|a,b| 1.0/a <=> 1.0/b } => [3, 2, 1]

Some iterator for numerics

upto 3.upto(5) {|i| print i, " " } => 3 4 5 (last value is included)

downto 3.downto(1) {|n| print n, ".. " } => 3.. 2.. 1..

times 3.times {|n| print n, ".. " } => 0.. 1.. 2..

step 1.step(6, 2) {|i| print i, " " } => 1 3 5

If the block is missing these methods return an Enumerator object which can be converted to an array with the
to_a method

3.upto(5).to_a => [3, 4, 5]

Some iterator for numerics

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 57
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

3.downto(1).to_a => [3, 2, 1]

3.times.to_a => [0, 1, 2]

1.step(6, 2).to_a => [1, 3, 5]

12.2.step(14.0,0.5).to_a => [12.2, 12.7, 13.2, 13.7]

Some Iterators for Strings

each_char loops on characters: "abcd".each_char {|k| print k+"z" }azbzczdz=>
"abcd"

each_byte;bytes loops on bytes: "abcd".each_byte {|k| print k,"-" } => 97-98-99-100-

eachy_line loops on lines (keep the final "n" characters)

upto loops on a sequence of strings: "a".upto("d"){|k| print k} => abcd

Also these methods, if the block is not present, return an iterator which can be converted to an array.

Some Iterators for Arrays

each gives each item to the block: [1,2,3].each {|k| print k} => 123

reverse_each gives items in reverse order: [1,2,3].each {|k| print k} => 123

each_index gives indexes to the block: [1,2,3].each_index {|k| print k} => 012

map array with block results: [1,2,3].map {|k| k+1} => [2,3,4]

collect;collect! array of block results: [1,2,3].collect {|i| i*i } => [1, 4, 9]

delete_if if block false deletes elements: [1,2,3].delete_if {|x| x.even?} => [1, 3]

keep_if keeps if block true: [1,2,3].keep_if { |x| x.even? } => [2]

select;select! elements with a true block: [1,2,3].select { |x| x.even? } => [2]

rindex index of element of first true block: [1,2,3].rindex {|k| k==2}=> 1

uniq ; uniq! elements with unique block value: [1,2,3,4].uniq {|k| k.even?}=> [1,2]

The creator of arrays can also be used as an iterator:

a=Array.new(3) { |i| i} => [0, 1, 2]

Some Iterators for Strings

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 58
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Some Iterators for Hashes
Hashes has iterators similar to the iterators for arrays, but give different arguments to the block:

each ;
each_pair

gives each pair key,value {1=>"a",2=>"b"}.each {|k,v| print k,v} => 1a2b

each_key gives the keys to the block: {1=>"a",2=>"b"}.each_key {|k| print k} =>12

each_value gives the values to the block: {1=>"a",2=>"b"}.each_value{|k| print k} =>ab

delete_if if block false deletes: {1=>"a",2=>"b"}.delete_if {|k,v| k==1 => {2=>"b"}

keep_if keeps if block true: {1=>"a",2=>"b"}.keep_if {|k,v| k==1 } => {1=>"a"}

select,select! hash of elements with true block: {1=>"a",2=>"b"}.select {|k,v|
k==1}{1=>"a"}

The merge method can be used associated with a block: when there are duplicated keys the block is executed
and the new value for the key is the the block result

{1=>"a",2=>"b"}.merge({1=>"x",3=>"z"}) {|key,v1,v2| v1+v2 } => {1=>"ax", 2=>"b", 3=>"z"}

Some Iterators for Hashes

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 59
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Input/Output
For input/output there is a "File class" which inherits the "IO class". The File class has methods to interact with
the file system and the IO class has methods to read and write files, but general usage statements as "print",
"open", "close", are methods of the Object class.

There are also some useful iterators to deal with files.

A file is represented by a "File object", an instance of the "File class"; Ruby treats input and output as is done by
the Unix system: files are simple streams of bytes; there are global variables referring to the default streams for
reading, writing and writing error messages: "$stdin, $stderr, $stdin. These are instance of the IO class. There
are also constants referring to these streams: STDIN, STDOUT, STDERR.

The function: open returns a File object:

f=open(filename,"access string")

If the filename begins with "|" it is a Unix named pipe; the access string defines the access method: read-only,
read-write append etc.

"r:iso-8859-1" to read-only, for a specific encoding

"w+" read/write

"w" write only

"a" append to file, write only

"a+" append, read/write

"b" binary, to be added to the other codes: "wb" , "rb" ..

Some methods useful to read a file are listed in the following table; "f" is the file object:

f.close() closes the file

a=f.gets gets the next line

a=f.readline

a=f.gets(10) gets 10 characters

a=f.gets("separator") gets a line, defined by an user-given line separator

a=gets next line from standard input

a=gets("separator")

a=f.getc gets next character

a=f.getbyte gets next byte

f.lineno returns the current line number

f.lineno=10 set the initial value of the line counter (file position unchanged)

f.pos returns the file position (current byte)

f.path the complete file name

a=f.readlines returns an array with the file lines

a=f.readlines("s") lines array, a line separator is given

f.each {|a| ..} an iterator over the file lines

Input/Output

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 60
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

f.each_line {|a| ..} an iterator over the file lines

f.each("separator"){|a| ..} here a line separator is given

f.each_byte {|b| ..} an iterator over bytes

f.each_char {|b| ..} an iterator over characters

In the following table some methods of the File class, useful to deal with files:

File.exist?(filename) true if the file exists

File.file?(filename) tests if filename is a regular file

File.directory?(filename) tests if a directory

File.symlink?(filename) tests if filename is a symbolic link

, ,

File.size(filename) file size in bytes.

File.size?(filename) file size in bytes or nil if empty

File.zero?(filename) true if empty

, ,

File.readable?(filename) true if readable

File.writable?(filename) true if writable

File.executable?(filename) true if executable

File.world_readable?(filename) true if readable by everybody

File.world_writable?(filename) true if writable by everybody

, ,

File.ftype("/usr/bin/ruby") type of the file: "file", "directory", "link"

, ,

File.rename("newname", "oldname") renames a file

File.symlink("name", "link") makes a link

File.delete("test2") deletes a file

File.utime(atime, mtime, filename) changes access and modification time

File.chmod(0600, f) sets unix file permissions (octal argument)

. .

File.read("filename") reads and return the entire file as a string

File.read("filename", 4, 2) returns 4 bytes starting at byte 2

File.read("filename", nil, 6) returns from byte 6 to the end-of-file

linee = File.readlines("filename") return an array with the file lines

File.foreach("filename") { } block looping on lines

Input/Output

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 61
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

The following examples show how the functions putc, puts, print, write can be used for output:

o = STDOUT

o.putc(65) # writes the single byte 65 (capital A)
o.putc("B") # writes the single byte 66 (capital B)

o << x # print 'x'
o << x << y # print 'x' and 'y'

o.print s

o.printf fmt,*args # the printf function of C

o.puts # prints a newline
o.puts x # prints 'x', then a newline

o.write s # doesn't print a final newline

The following examples show how a specific position in a file can be accessed (random access):

f = File.open("test.txt")

f.pos # returns the current byte, same as: 'f.tell'
f.pos = 10 # set the position counter to 10

f.rewind # goes to the beginning of the file

f.seek(10) # go to byte 10, same as: 'f.seek(10, IO::SEEK_SET)'
f.seek(10, IO::SEEK_CUR) # skips 10 bytes from current position

f.eof? # tests if at end of file
f.closed? # tests if the file has been closed
f.tty? # tests if the stream is the interactive console

Ruby doesn't write immediately to e file when a print statement is issued, but use memory buffers for a
temporary storage to optimize the writing times; the operating system uses its own buffers too: the Ruby output
is buffered by Ruby, then given to the system and stored again; the writing is not a real-time process; but some
Ruby functions can control the buffering:

out=File.open('filename')
out.write("abcd")

out.flush # flush the Ruby output buffer for this stream

 # to set the buffer mode:

out.sync = true # buffers are flushed after every write
out.sync = false # output is buffered by Ruby
out.sync # show the current buffer mode
out.fsync # flush the system buffers (not possible for some systems)

Input/Output

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 62
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

Modules
A module is a collection of classes and methods, stored in a file and defining a namespace. A module is an
instance of the Module class, the "Module" class is inherited by the class: "Class", whose instances are the
class definitions.

A module in a file named "nomefile.rb" can be included in a Ruby program and executed with the "load" or the
"require" statements.

To use a method or a constant defined into a module the method or the constant name must be prefixed with the
module name as: "Math::sin(90.0) ; Math::PI" "::" being the "resolution" operator.

Modules can be nested.

A module is defined by the keyword "module" ; the name of a module has the first letter capitalized; the name is
a constant associated with the module

module Nomemodulo # module definition

 class ... # definition of a class in the module

 end

 def ... # definition of a function in the module

 end

end

Modules can be included into a class (mixins); if variables are defined into the module, module accessor
functions have to be defined in the module to use the variables as attributes of instances of the class including
the module.

The statement "include" mixes a module into the namespace of a class, if the module is in its own file, and not
in the same file of the class, the file containing the module must be loaded with "load" or "require" before the
inclusion in the class:

module Mod # a simple module

 def func # with a simple method
 "A function of Mod!"
 end
end

class Classe
 include Mod # mixed into a class
end

b=Classe.new # an instance

b.respond_to? :func => true # responds to the module method
b.respond_to? "func" => true

b.func # => "A function of Mod!"

Modules

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 63
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

The extend method can insert a module into an instance, and the methods of the module become singleton
methods of the instance:

module Mod
 def func
 "A function of Mod!"
 end
end

a = []
a.extend(Mod)
a.func # => "A function of Mod!"
a.singleton_methods # => ["func"]

When, for an object, the freeze method is called, the object can't be extended with a module.

Builtin Modules
Many functionality is offered by a number of builtin modules, as Math, for mathematics functions, or Marshal, to
transform complex objects into a single string. Some builtin modules are listed in the following table

Name Content

Kernel Implements main methods and statements

Comparable Methods for comparisons

Enumerable A lot of iterators

Marshal Data serialization

Math Mathematical functions

Process System process management

Signal System signal processing

Standard Library
What is not implemented into the languages or the builtin modules is into a standard library, structured into
modules and distributed along with the language; there are about hundred modules in the standard library, in the
following table a list of some modules.

CGI Common gateway interface

CSV for CSV files

Curses To deal with textual interfaces

Digest compute digests

erb html template (used also by rails)

find the unix find utility

gserver for tcp net servers

ipaddr for tcp/ip addresses

json json parser and writer

Builtin Modules

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 64
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

logger messages to the system

matrix vector and matrixes in Ruby

net/ftp ftp client

net/http httpd client

net/imap imap client

net/pop pop client

net/smtp to send mail

net/telnet remote connection

socket socket implementation

openssl ssl sockets connection

rss parse rss streams

scanf the scanf function of the C language

set for the set algebra

shellwords split a phrase in an array of words

singleton makes a class with a single instance

socket BSD sockets for network applications

syslog writes on the system syslog

tempfile temporary files management

tk interface to the tk language

webrick http server

xmlrpc xmlrpc implementation

yaml yaml parser and serializer

zlib for file compression

marshal to serialize using binary files

gems virtual environments and gems management

Builtin Modules

Raw Notes on the Ruby Language, Version: 25-11-2014 17:45, by Marcello Galli. Pg. 65
Downloaded from http://www.helldragon.eu/

http://www.helldragon.eu/

	Introduction
	References
	Main Features
	Usage
	Syntax
	Predefined variables and constants
	Inclusion of External Files
	Scope of Names
	Scope of Constants
	Statements
	Conditional Statements
	Loop Statements
	Exception Handling
	Postfix Expressions

	Operators
	Classes and Methods
	Instance and Class Variables
	Methods and Functions
	Public, Private and Protected Methods
	Function Call
	Function Definition
	Function Arguments
	Blocks Given to Functions
	proc and lambda
	Class Definition
	Inheritance
	Class Instances
	Class Methods and Instance Methods
	Accessor Functions and Instance Variables
	Adding Methods to a Class
	Singleton Methods

	The Object Class
	Logical Classes
	Numeric Classes
	Methods for the Numeric Classes
	Methods for Integers
	Methods for Floats
	Conversion Methods
	Subscript Operator
	Precedence for operators

	String Class
	String Encoding
	Double-quoted String
	Single-quoted Strings
	String Operators

	Array Class
	The Subscript Operator: []

	Hash Class
	Range Class
	Regular Expressions
	Other Builtin Classes
	Iterators
	The Enumerator Class
	The Enumerable Module
	Some iterator for numerics
	Some Iterators for Strings
	Some Iterators for Arrays
	Some Iterators for Hashes

	Input/Output
	Modules
	Builtin Modules
	Standard Library

